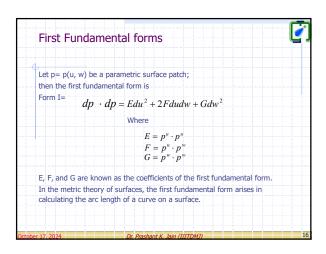


Intrinsic properties of a Bezier curve

Given a Bezier curve with control points $p_0 = [-2 -2 4]$ $p_1 = [2 -4 1]$ $p_2 = [6 -3 0]$ $p_3 = [10 0 0]$ and $p_4 = [10 4 2]$ Find the tangent vector and line, the normal plane, the principal normal vector and line, the binormal vector, the osculating plane, and rectifying plane at u=0.5

Find the curvature, curvature vector, center of curvature, and torsion at u=0.5 for the Bezier curve defined above.

Find any inflection point on the Bezier curve defined above.



Second Fundamental forms

Denote the unit normal to a surface at a point p(u, w) as n(u, w) or, more simply as n.

Then the second fundamental form is

Form $II = -dp \cdot dn = Ldu^2 + 2Mdudw + Ndw^2$ Where $L = -p^u \cdot n^u$ $M = -1/2(p^u \cdot n^w + p^w \cdot n^u)$ $N = -p^w \cdot n^w$ L, M and N are known as the coefficients of the second fundamental form. Note: n^u and n^w are perpendicular to n. Then, since p_u and p_w are perpendicular to n for all u, w, we can derive alternative expressions for L, M, and N i.e. $L = p^{uw} \cdot n$ $M = p^{uw} \cdot n$ $N = p^{uw} \cdot n$

