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: : : Bezier Curve i
Computer Aided Geometric Design 7]
Mathematically a parametric Bezier curve is defined by

e P(t) = X1 o BiJn i (t

Bezier Curve ® i=0 BiJn,i (£)

where the Bezier or Bernstein basis or blending function is
Jni@®=(7) @ -
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. Thus degree of the polynomial curve segment, is one less than the number
r PDPM of points in the defining Bezier polygon.
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Blending functions

Blending functions for several values of n For example, each of the four blending functions shown in Figure for n=3 is
Notice the symmetry of the functions a cubic. The maximum value of each blending function occurs at t =i/n.
T i (6) = (n) it{(n-pn-i
nt i nn
For example, for a cubic n=3, The maximum values for J; ;and J; ,occur at
1/3 and 2/3, respectively, with values
J 1 4
3,1 3 T 9
J 2 4
32\3) 7 9
(a) three polygon points n=2; (b) four polygon points, n=3;
(c) five polygon points, n=4; (d) six polygon points, n=5.
ISentember 16,2024 L% Prashant K. Jain (ITDMJ) 4 ISentember 16,2024 L% Prashant K. Jain (JITDM) 5l

". Examining eqns. for the first point on the curve i.e. at t=0 shows that '.
The derivatives of the basis function are obtained by formally differentiating E . E
i ny — - nt(0)'(1 - 0)"° .
gquatlon]n,i ) = (i)t‘(l — )™, Specifically ’ Jn,0(0) = BT C ) 1 i=0
’ ny (. e —i o dj ir1 — o)yt
i@ = ({16720 = "=~ - e - " 1)=0 oty (?l)[((nl i_(;? —0 i%0
LN - O™ —(n - DL - )"T=0 - (0} B o (0 =B
{611 = O = (- D)L — £)nitL ue = BoJn,0 (0) = Bo
L e This shows that the first point on the Bezier curve and on its defining
o 1 -t i= -t & polygon are coincident .
t 1-t
( ) Similarly for the last point on the curve, i.e. at t=1

i (n—-i) )

T a= nl (DO |

t (1-9 Jan (D) = —Js—=1 i=n

(1-0 @-i n (@)
=TT n! (DI -t
(DHD=—""- =9 i =
1 1_n 1 Jn, i (D) =) i#n
P Thus P(1) =By Jn,n (1) = By
1 i s This shows that the last point on the Bezier curve and the last point on its
t i defining polygon are coincident.
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Derivatives Bezier Curves L4 Derivatives Bezier Curves U4
~ Although it is not necessary to numerically specify the tangent vectors at ~ The derivatives of the basis function are obtained by formally differentiating

ST . Fimpy o L
the ends of an individual Bezier curve, maintaining slope and curvature equation]n | (t) [ ( ) t‘(l 1 t)n i Specifically
continuity when joining Bezier curves, determining surface normal for . 12

lighting or numerical control tool path calculations, or local curvature for
smoothness or fairness calculations requires a knowledge of both first
and second derivatives of a Bezier curve.

I @® = (7) it - - - el - oY

ny . i (n—i
=(.)t‘(1—t)"“ LA )
Recalling equation, the first derivative of a Bezier curve is L t (1 - f)
’ _yn ’ i—nt
P'(t) = $10BiJ'n (O o Gty
t(1—¢)" ™"
Second derivative is given by
Similarly the second derivative is
n
" - . (i —nt)?—nt? —i(i — 2t)
PO = ) BiJ"ni (0 St (®) = i L N0
2 (1-1t)
i=0
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Derivatives Bezier Curves & Derivatives Bezier Curves &
At the beginning and the ends of a Bezier curve i.e. at t=0 and t=1 numerical
evaluation of above equations creates difficulties. Similarly the second derivatives at the ends are
| An alternate evaluation for the rth derivative at t=0 is given by \ P"(0) = n(n — 1)(Bo — 2B1+ B2)

L And P"(1) = n(n — 1) (By — 2Bn_1 + By_s)
PT(0) = ﬁ =D ([)Bi

Att=1 by Thus the second derivative of the Bezier curve at the initial and final points

depends on the two nearest polygon spans i.e. on the nearest three polygon
n! r i(T ti
— o1 (i)Bn—i vertices.
Thus the first derivatives at the ends are

P’(0) = n(By — By)

And P'(1) = n(B, — By_1)
This illustrates that the tangent vector for a Bezier curve at the initial and final
points has the same direction as the initial and final polygon spans.

PT(1) =
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Example on Derivatives

Example on Derivatives
Consider the four points Bezier polygon i

P(t) = 30]3'0 (t) + 31 ]3'1 (t) + 32]3,2 (t) + 33]3,3 (t) Consider the four points Bezier polygon
Hence first derivative is P(t) = ByJ3,0 () + By J3,1 (t) + B33, (t) + B3J35(t)
P'(t)=BoJ's,0 ) + By J'51 () + B2J'52(t) + B3J'5,3(t) Henge first derivative is
Differentiating the basis functions directly yields P'(t) =BoJ'30() + By J'31 () + ByJ'32 (1) + B3J'33 (1)
]3'0 (t) = to(l - t)3 - ]/3'0 (t) = _3(1 _ t)2 Second derivative is
Jo 1 (O = 3t(1 — 1)? S, (=301 - 2 — 6t(1— t) P"(t) =BoJ"3,0 (t) + By J"3,1 (©) + B2 J"3,2 (6) + B3J"3,3(t)

Differentiating the basis functions directly yields

oo @® =t =0)® = J', (O =-30-0)2=>],, @©)=6(1-t)
B =3t(1-02 -], (©)=31-0%-6t(1-10) ”1"3,1 (t) = —6(2 — 3t)
J32(®) =32 A —6) = J'y , () = 6t(1 =) =3(0)2 ~> '3, (£) = 6(1 - 30)
J53 () =1t3 = ]33 = 3(’-’)2—’/"3,3 (t) =6t

20 =3t21-t)> J'; , ) =6t(1—t) = 3(t)?
J3,3(6) = t3 = J'5 3 (8) = 3(t)?
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_Evaluating the results at t=0 yields
Jo@==3, J, (0=
Substituting yields
P'(0) = =3By + 3B, =3(—By +B;)
Thus the direction of the tangent vector at the beginning of the curve is the
same as that of the first polygon span

3, J'5,(0)=0, J'33(0)=0

At the end of the curve, t=1 and
Jse@=0, ', (1)=0,
Substituting yields
P'(1) = =3B, +3B; = 3(=B, + B3)
Thus, the direction of the tangent vector at the end of the curve is the same
as that of the last polygon span.

Sy, =3, J'35(1)=3
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Example on Derivatives &

Evaluating the results at t=0 yields
J5o@==3 ', (0)=3, J',,(0)=0, J'55(0)=0
Substituting yields
P'(0) = =3Py, + 3P, =3(—Py +P,)
Thus the direction of the tangent vector at the beginning of the curve is the
same as that of the first polygon span

At the end of the curve, t=1 and
J3oM=0, J',, (1)=0,
Substituting yields
P'(1) = =3P, +3P; =3(—P, +P3)
Thus, the direction of the tangent vector at the end of the curve is the same
as that of the last polygon span.

113,2 1) =-3, ]’3,3 (1) =3
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Similarly, the second derivatives are N
{(—30)2-3t%}
t2(1 —t)?

. {(1—3t)%-3t2 — (1 -20)}

J5. @ = t2(1— )2
=—6(2—3t)
{(2-3t)2-3t2 —2(1 - 2t)}
t2(1 —t)?

Jao®= a-9=6(1-0

BO(1—t)?

J5,®=
=6(1—3t)

{3-30)>-3¢2 =3(1-20)} ,
t2(1 —t)? 8=

3t2(1-1t)

6t

PO

For t=1/2, these results yield

(1 1 3 3
P'(3)=6(1-5)B0 ~6(2~5)B: +6(1-5)B; +38,

=3B, —3B; — 3B, +3Bs=3(By —B; — By +B;)
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_ Evaluating the results at t=0 yields
"0 @ =6,J", (0)==12, J", ,(0)=6,]";5(0) =0
Substituting yields
P"(0) = 6By — 12B; + 6B, = 6(By — 2B, +B;)
Thus second derivative or curvature of Bezier curve at start point depends on
three nearest polygon points or two nearest polygon spans.

At the end of the curve, t=1 and
i - — — " —_
' =0 (D=6, T (D =12, s s (1) =6
Substituting yields
P"(1) = 6By — 12B, + 6B; = 6(B; — 2B, + B3)
Thus second derivative or curvature of Bezier curve at end point depends on
three nearest polygon points or two nearest polygon spans.

Example on Derivatives &

16, 2024
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evaluate the derivations along the curve. Specifically, the first derivatives are

0-3t
J'50® = %(1 —t)*=-3(1 - t)?
J'y, () = E‘(ff; (B3)(1 = £)%=3(1 — 3t)(1 — t) = 3(1 — 4t+3t2)
; -3, e
J'5.2 0 = fr—p B -0 =312 =30)
31—
J'55 ) = “(1—7253 =(3t%)

Notice that there is no difficulty in evaluating these results at either t=0 or t=1.
Substituting into eqn. yields at first derivative at any point on the curve.
For example, at t=1/2,

2

The basis functions given above along with equations can be used to 4

(ORI L (PRI N

3 3 3 3 3
=780 —7Bi + 7B+ 3By =—7(By +B: — B, ~B3)
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Continuity conditions «

If one Bezier curve P(t) of degree n is defined by vertices B; and an
_adjacent Bezier curve Q(s) of degree m by vertices C; then first derivative
continuity at the joint between the curves is given by

P'(1) = gQ'(0)
Where g is a scalar.
n(Bp — Bp-1)=m(C; — Co)
(1= Co) =By = Bny)
Since positional continuity is implied at the joint, Cy = B,, and
C1=2(By = Bpt) + By

Thus the tangent vector directions at the joint are the same if the three
vertices

B,_1, B, = Cy and C; are collinear, i.e. B, need only lie somewhere on
the line between B),_; and C;.
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D
_ If both direction and magnitude of the tangent vectors at the joint are to be
equal then for equal degree curves (n=m), B,, = C, must be at midpoint of
the line joining By,_; and C; i.e.

(Cy— Co) =By — By_1=Co—Bny

September 16, 2024

_ Using the conditions for Cy and C, continuity at the joint given above

Second derivative continuity between adjacent Bezier curves is given by
m(m — 1) (Cy —2C; +C;) =n(n — 1)(By_2—2B,_1+By)

yields
el 220D Mg {1224

m(m-1) m(m-1) m

n(n-1) } B,

m " m(m-1)

For cubic Bezier curve

Ci+ B,_1= 2C, =2B,
Pt e € = Buy ~4(Bn1 —By)

Figure illustrates this for n =m =3 i.e. For two cubic Bezier curves.

Second derivative continuity between quartic Bezier curve
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Additional flexibility in Bezier Curves | | Additional flexibility in Bezier curve | |
Sub division
U Degree raising Additional flexibility can also be obtained by subdividing a Bezier curve into
\D Sub division “"two new Bezier curves that, combined are identical with the original curve.
A Bezier curve can be divided at any parameter value in the range 0 to 1. The
simplest choice at the midpointi.e. t=1/2.
Here the results for midpoint subdivision are derived for the special case of
cubic Bezier curves.
A cubic Bezier curve is given by
p () =1 —t)°By+3t(1—t)?B; +3t>(1 —t)B, + t3Bs
/ 0<t<1
/
/ ] /
AY
1
]
/
/ /
/ /
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Additional flexibility in Bezier curve Sub division of Bezier Curve
Sub division 3 / : / With defining polygon given by By, By , B, , Bs. The polygon Cy, Cy ,Cy, C3
1t=0.4 ’,/ :t:0'4 // _then defining the Bezier curve Q(u), 0 < u <1 corresponding to the first half
1t=0.
24 25 / ¢ /' of the original curvei.e.p (t) = 0 < t < 1/2 is required.
1
22 . / . / Similarly, the polygon Dy, Dy , D, , D5 that defines the Bezier curve R(v),
2
2 : ,' 0 < v <1 corresponding to the second half of the original curve; p (t) =
1
o :' s ’,' 1/2 <t < lisalso required.
14 1 ! The new defining polygon vertices C;and D; are obtained by equating the
'
N 4 position and tangent vectors
! = 5 1 15 2 25 3 35 4
atu=0,t=0u=1t=1/2 We obtain these equations
s 1 2t=0.4
1t=0.4 iy andv=0,t=1/2;v=1t=1; Co= By
2.5 ! 2 . . ol ood
3 Using Bezier definitions 3
| 4 3(C1 — Go) =5 (Bi— Bo)
: ! b P(t) = Xizo BiJn,i (1)
= =0PiJn,i 3
. : F = 3(Gs ~ €)= (By+By +B: ~ By)
1 i ! n ’
| P'(t) =Y ,.B; (t
! b ® i=0 B/, i (0 C3=+(B3+3B, +3B; + By)
1 15 2_T25 3 35 4 26 28 3 32 34 36 8
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Sub division of Bezier Curve & Sub division of Bezier Curve &
Solution of these equations gives | i

Co= By Similarly _ Define a Bezier curve with four polygon vertices B,[024], B,[464],

e 1 (By+ Bo) § B,[6 1 4] and B,[10 5 4], then Subdivide this curve in two separate Bezier
Rl 0 Do= E(B3+3BZ +3B1 + Bo) curves at t=0.4. Plot two new control polygons.
1

Cy = 7 (B2 +2B; + By) D, =1—(B3 +2B, + By) First Control Polygon
1 ) \ 0 2 4
Cs=5 (Bs+3B, +3B; + Bo) D=3 (Bs+ By) 16 36 4
D3=B; 2.88 3.76 4
Results generalize to 4.096 3.632 4

i i\ B

= 23:0 ([) 2({ i=0,1,uuno,n Second Control Polygon
4.096 3.632 4
n—1i\ B . 5.92 3.44 4

D‘:Z}l:i(n~j) znfl. i=0,1,..,n
7.6 2.6 4
Applied successfully, the defining polygons converge to the Bezier curve itself 10 5 2
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de Casteljau’s Algorithm

Curve Subdivision
@ Cascading lerps

Trimming of Bezier Curve

Now complete relationship between two sets of control polygons

Por=(1-t) po+tp; 23] /,/ ///
9 =pi

P, = (1-t)py +tp, 24| / /

24 / / 4 =P
Py = (1-t) p, +tps /

= / / W,
Po1z = (1-t) poy + t Py, A / / qi e pi
Pixs = (1-1) Py + £ Pos o/ // I

ol / // qf =S TN
Po123 = (1-t) Poy, + t P1ag Ny / // R e e

o p; /
# Subdivides curve at py,,3 1

= Po Po1 Po12 Po123 75 2 25 3 35

A’

Tangent vector magnitudes must change to accommodate a change in
the range of the parametric variable and are simply scaled by the ratio of
the ranges of parametric variable.

» This preserves the direction of tangent vectors and shape of the curve.

" Po1z P13 P23 P3

# Repeated subdivision converges to curve
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Trimming of Bezier Curve | I Additional flexibility in Bezier curve
Define a Bezier curve with four polygon vertices By[4 4], N Degree Ra/'smg
B4[28], B,[68]and B;[8 4], then Trim this curve in a smaller _ If a Bezier curve with additional flexibility is required, the degree of the
new Bezier curves at t=0.3 to t=0.7. Plot new control polygon defining polynomial can be increased by increasing the number of defining
and curve. polygon points.
8 N \ For every point on a Bezier curve with n defining polygon vertices By --- By,
\ \ ) ; ! L £
7sf\ \ the same point on a new Bezier curve with n+1 defining polygon vertices is
) \\ \ given by By =+ B* 44
\ \ n n+1
65 \\ \ .
\ \ PO =) Bini® = ) Btnin,i O
6 \\ \\ i=0 i=0
d \\ \\\ Where B*y =By
3 \\ \ B*i =o¢; By + (1 = x)B;
\ \ .
4.5, o= ey i=1..0.,n
2 3 4 5 6 7 8 B'ns1 =By
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iy . . 0
de Casteljau’s Algorithm 4 Flow chart U4
Point on the curve =
? A point on the Bezier curve for any parameter value t can also be find
# To find a point at t=0.25, instead of taking midpoints take points 0.25 of
the way Connect each control pointy
@ Point My,,; on the line My,-M,; will be a point on the curve at t=0.25 to get convex hull
M. Subdivide each segment using
12 T
P, mid point approach
[Connect all mid points in sequentiall
My order to get new convex hull No
/
If mid point lies on
the curve except
first and last point
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