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Curves

Rational Curves and NURBS

October 10, 2017 Dr. Prashant K. Jain (IIITDMJ) 173

Rational Curves

 Non Rational Curves: defined by one polynomial

 Rational Curves: defined by the algebraic ratio of two polynomials.

 Draw their theories from perspective geometry.

 Each point is the ratio of two curves

 Just like homogeneous coordinates:

Advantages:

 Perspective invariant (the perspective image of rational curve is a rational curve, 

and can be evaluated in screen space.

 Can perfectly represent conic sections: circles, ellipses, etc.

 Piecewise cubic curve can not represent this.  
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Rational B-Spline curve

A Rational B-spline curve is the projection of a non rational (polynomial) 

B-spline curve defined in four dimensional (4D) homogenous coordinate 

space, back into three dimensional (3D) physical space.

Specifically:  

4-D homogenous control polygon vertices 
for the non-rational 4-D B-spline curve

Non rational B-spline 
basis function
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Rational B-Spline Curves

Projecting back into 3D space by dividing through by homogenous 

coordinate yield the rational B-spline curve.

rational B-spline 
basis function

3-D control polygon vertices for the 
rational  B-spline curve




 








 
1

1
1

1

1 )(

)(

)(

)(
n

i
i,kin

i
i,ki

n

i
i,kii

tRB

tNh

tNhB

tP

1

October 10, 2017 Dr. Prashant K. Jain (IIITDMJ) 176

Rational B-Spline Curves

 Equation shows that Ri,k(u) are a generalization of the non rational 

basis function Ni,k(u).

 Substitute hi=1: Ri,k(u)=Ni,k(u).

 The rational basis function Ri,k(u) have nearly all the analytical and 

geometric characteristics of their non-rational B-spline counterparts

hi> 0 for all values of i
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Each rational basis function is positive or zero for all parameter values, i.e.,

The sum of the rational B-spline basis for any parameter value t is one, i.e.,

Except for k=1, each rational basis has precisely one maximum.

A rational B-spline curve of order k (degree k-1) is ck-2 continuous everywhere.

The maximum order of rational B-spline curve is equal to the number of defining 

polygon vertices.

A rational B-spline curve exhibits the variation diminishing property.

A rational B-spline curve generally follows the shape of the defining polygon.

A rational B-spline curve lies within the union of convex hulls formed by k 

successive defining polygon vertices.

Any projective transformation is applied to a rational B-spline curve by applying it 

to the defining polygon vertices; i.e., the curve is invariant with respect to a 

projective transformation. that this is a stronger condition than that for a non-

rational B-spline which is only invariant with respect to an affine transformation.
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Rational B-Spline Curves
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Difference between rational and non rational B Spline curves

 Ability to use hi at each control point to control the behavior of the 

rational curves in general.

 Choice of H vector controls the behavior of the curve.

Further Rational B-spline are:

 Unified representation that can define a variety of curves and 

surfaces including conics.

 Can represent all wireframe, surface and solid entities, this allows 

unification and conversion form one modeling technique to 

another.
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Effect of the homogeneous coordinates h on the rational 
B Spline basis functions

For X=[0 0 0 1 2 3 3 3], n+1=5, k=3 and H=[1 1 h3 1 1]

h3=0

h3=1.0 h3=5.0

h3=0.25
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Rational B Spline Curve for

For X=[0 0 0 1 2 3 3 3], n+1=5, k=3 and H=[1 1 h3 1 1]
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Effect of the homogeneous coordinates h on the 
rational B Spline basis functions

For X=[0 0 0 0 1 2 2 2 2], n+1=5, k=4 and H=[1 1 h3 1 1]

h3=0
h3=0.25

h3=1.0 h3=5.0
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Rational B Spline curve with Periodic/uniform knot vector

For X=[0 1 2 3 4 5 6 7], n+1=5, k=3 and H=[1 1 h3 1 1]
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Rational B Spline Curve with open uniform knot vector

For X=[0 0 0 0 1 2 2 2 2], n+1=5, k=3 and H=[1 1 h3 1 1]
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Effect of moving single vertex
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Effect of multiple vertices

a, H=[1 1 0.25 1 1]

b, H=[1 1 0.25 0.25 1 1]

c, H=[1 1 0.25 0.25 0.25 1 1]
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derivatives of Rational B Spline

The derivatives of Rational B Spline curves can be 
obtained by formal differentiation. Specifically:
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Evaluating these results at t=0 and t=n-k+2 yields
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Representation of conic sections

Provide a single  mathematical description capable of 
blending the conic sections in to free form curves.

Consider a quadratic rational B spline defined by three 
vertices with knot vector X=[0 0 0 1 1 1] and writing this as:

Assume h1=h3=1
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Conic sections

At t=1/2

h2=0 a straight line results.

0<h2<1 an elliptic curve segment results.

h2=1 a parabolic curve segment results.

h2>1 a hyperbolic curve segment results.
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For t=1/2, P(t)=S which yields
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writing the parametric equation of the straight line between 
M and B2 gives

S=(1-u)M+uB2

Equating coefficients 
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The parameter u controls the shape of the curve and its conic form. 
Hence, it is a good design tool.
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where u is the parameter.
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Circular arc
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Circle

3 segments of 1200
4 segments of 900

X=[0 0 0 1 1 2 2 3 3 3]

H=[1 1/2 1 1/2 1 1/2 1]
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Generating conic sections and blending with free form curves

Construct a single third-order rational B-spline curve that blends a 900 circular arc defined by a qudratic 

rational B-spline curve with polygon vertices B1[0 0], B2[0 2], B3[2 2] with the third-order quadratic 

rational B-spline curve defined by B3[2 2], B4[4 2], B5[6 3], B6[7 5] with hi=1, 3≤i ≤6.

The 900 circular arc has knot vector [0  0  0  1  1  1] and homogenous coordinate vector [1  √2/2  1]. The 

rational B-spline curve defined by B3, B4, B5, B6 has knot vector [0  0  0  1  2  2  2] with homogenous 

coordinate vector [1  1  1  1].

[X]=[0  0  0  1  1  2  3  3  3] is the nonuniform knot vector for the combined curve, with [1 √2/2  1  1  

1  1] the homogenous coordinate vector.
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What is NURBS

Non-uniform: The amount of parameter, u, that is used to 

model each curve segment varies.

Rational: The parametric functions that define each curve 

segment are ratios of polynomials: 
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Advantages

Non-uniformity permits either C2, C1 or C0 continuity at join 
points between curve segments.

Non-uniformity permits control points to be added to middle 
of curve.

Rational curves are invariant under rotation, scaling, 
translation and perspective transformations of the control 
points (non-rational curves are not preserved under 
perspective projection).

 This means we can transform the control points and 
redraw the curve using the transformed points.

 If this weren’t true we have to sample curve to many 
points and transform each point individually.
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